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LETTER TO THE EDITOR 

Path integral bosonisation for the Thirring model in the 
presence of vortices 

Luiz C L Bothelho 
Departamento de Fisica, Universidade Federal do Pari, Campus do Guama, Belem, Para, 
Brazil 

Received 29 August 1989 

Abstract. We study the bosonisation of the Abelian Thirring model in the presence of 
vortices in the framework of path integrals. 

Recently the bosonisation of two-dimensional fermionic models in the framework of 
path integrals has been shown to be a powerful non-perturbative technique for exactly 
solving these models in the absence of fermion zero modes [ l ,  21. 

It is the purpose of this letter to implement the path integral bosonisation framework 
for the case of non-trivial fermion zero modes by bosonisation of the Abelian Thirring 
model in the presence of vortex field configurations. 

Let us start our analysis by considering the Abelian Thirring model interacting with 
a vortex field with topological charge n. Its Euclidean Lagrangian is given by 

(1) 

where ( g ,  e )  are positive model coupling constants. The Euclidean Hermitian y,, 
matrices we are using satisfy the relations 

Z o ( h  i, A:’) = i iY,,~,$+tg2(cClY,,$)2+ eiY,,Ap’$ 

{Y,,, YY) = 28,” Y,Y5 = i&,,”Y” Ys = iY0Yl  Eo,  = - E 1 0  = 1 (2) 
and the vortex field A:’(x) with topological charge n (Chern number) and ‘length’ R 
is 

The generating functional associated with the theory (1) is, thus, given by 

In order to implement the path integral bosonisation gauge invariant technique 
[ 1,2], we rewrite the fermion interaction term in the Hubbard-Stratonovitch form: 

( 5 )  
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Let us now proceed as in [l,  21 by making the (partial) decoupling field change in 
( 5 )  

+(x)  = [ exp( igw)xI (x )  

B,(x) = (gE,Ya”~)(X). (6) 

CLb) = [x exp(igysu)l(x) 

As has been shown by Fujikawa [3], the transformations of (6) are not free of cost 
in the fermionic sector since the functional measure D[$] D[$] is defined in terms of 
the normalised eigenvectors of the Dirac operator Ip(B,; A:’) in the presence of the 
external (auxiliary) Abelian field B, and of the vortex topological field A:’. 

At this point we note that after the chiral change takes place, the new quantum 
fermion vacuum is defined by the fermionic theory in the presence of the topological 
vortex; i.e. D[x] D[ j ]  is now defined in terms of the eigenvectors of the Dirac operator 
@(A:’) which in turn has precisely n fermionic zero modes with definite chiriality 
[4]. Their explicit expressions are 

YscL~o,,r(x) = +(O,,dX) ( 7 b )  

( 7 c )  hi(x, A) = exp ie d2z A,=,(x - z)(d,A:’*i&,,a,Al”’)(z) ) ( I  
with A,,, z) the (infrared regularised) massless Klein-Gordon propagator. 

The associate Jacobians are given by [ 1,2] 

D[ B,] = D[ U]. ( 8 b )  

So, we face the problem of the evaluation of the ratio of the two Dirac determinants 
with zero modes. 

By following the procedure of [ 1,2], we first introduce a one-parameter continuous 
family of Dirac operators interpolating the pure vortex Dirac operator and 
Ip(Af’, B,) = iy,(d, +gB, +ieA:’) defined by the expression 

Ip(‘’(B,,, A:’) = exp(igy,au)Ip(A:’) exp(igy,au) (Os u s  1). ( 9 )  

By using a proper-time prescription to define the functional determinant of 
Ip(‘’(B,, A:’) (after making the analytic extension g = -ig [2]). We have the result 

log det Ipcv) = log det(Ip(‘)2)lg=ig 

with 
n 

P(%) = c (l IPGJ.OPGJ,, 
/ = 1  

denoting the projection over the zero modes of the Dirac operator B,, A:’). Let 
us remark that by the Atyah-Singer theorem, this operator still has n zero modes 
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P&),l(x) which are related to those of ( 7 a )  by an analytically continued chiral rotation 
(6): 

P&. I (X)  = e x P ( - ~ r s ~ ) ( L ~ o , , I ( x ) .  ( 1 1 )  
The functional determinant (10) satisfies the following differential equation: 

d - log det Q(-)( B,, A:’) 
d a  

= -2 lim Tr[gy,u exp(-l Q(‘’z)(U-P(u’)]~~’e 
E +o+ 

The second term in the right-hand side of (12) is easily evaluated by noting that 

which yields the zero-mode contribution for the determinant (12): 

Since Q ( m ’ 2  is a self-adjoint invertible operator in the manifold orthogonal to its 
zero modes, we can use the usual Seeley-De Witt technique to evaluate the first term 
in (12), which produces the usual result 
-Tr(gy,u exp(-l  Q‘“’2 ) (U  -P(‘)))l: ’E 

= cr-Tr 57 l (  (-ig)u(-ig)d’u+‘.F,.(Ap’)). 2 

7T lr g /  

- i g c ( & )  i / d2X ( L : o ~ . , ~ ~ ~ ~ ~ ~ ~ ~ ~ o , , l ~ ~ ~  

(15) 

By combining (15)  with (14) and coming back to the real coupling constant g, we 
obtain the final expression for the Jacobian ( 8 a )  after integrating the differential 
equation (12) 
log det @( B,, A;’) - log det Q( B, = 0, A:’) =$I d2x f ( d u ) ’ + -  d2x&,,F,,(Af’)u 

(16) 
/ = I  

where we have used the unitarity of the matrix exp{igy,u} to evaluate (14) and C ( E )  
is the usual infrared divergence contribution for the zero-mode term, which can be 
made finite by a multiplicative renormalisation of the Thirring coupling constant g. 

The generating functional thus takes the simple form 

ZET, ii, A:’] 
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with Z ( o ) [ ~ ,  fj, A:’, U ]  being the generating functional for the fermions in the pure 
vortex field configuration 

Z,O,[T, 6, A:”’, U 1  = [ D[xl D[k1 

x exp( -[ d2x(,f @(A:”’)x +,f expigy,uq + i j  expigy,ux)(x)). (18) 

Let us exemplify our approach by calculating the two-point fermion correlation 
function for an external vortex field with topological charge 1. By functional differenti- 
ation of 2(o) [v ,  fj, A;’, U ]  twice, we get 

(k exp igy,u)a(x)(exp igY,uxY)p(Y) 
= [exP(igy,u(x))S“’(x - Y )  exp(igy54 Y ) ) lap  (19) 

where S“’(x - y )  is the Euclidean Green function of the Dirac operator @(A:’) for 
n = 1 which is given explicitly by [4] 

1 
277 

S“’(x -y)  = -- 

( Y l  -iYA 
(l+x2)’/2(1+y2)’/2 

+ 
x1 + ix, + 

(1+x2)’/2(1+y2)’/2 
(20) 

By evaluation of the U average of (19) we finally have the complete expression for 
(&(x)*lv)): 

being the only zero mode of @(A!) ) .  

I am grateful to postdoctoral fellow Sebastiso Alves at CBPF for calling my attention 
to the problem of zero modes in the Fujikawa framework for the axial anomaly. 
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